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STMMARY

The slender-wing-type anelysis is used to obtaln general expres-
sions for the surface pressure, 1lift, and rolling moment for cambered
wings with swept trailing edges. These results are specialized to give
the additional loading due to the deflection of trailing-edge control
surfaces and the losding due to & particuler type of wing twist. Im
contrast to flst-plate wings, cambered surfaces (or wings with control
surfaces) support load downstream of the maximum span of the wing where
the slope of the leading edge 1s equal to or less than zero. The pres-
sure distribution and the stresmwise 1ift and rolling-moment distribu-
tions are discontinuous across the plane normal to the stream direction
pessing through the wing maximum span unless the slope of the wing leading
edge is continuous and zero at thls chordwise station. A numerdical
example for an slleron control is included.

INTRODUCTION

The flow field sbout configurations which are slender in the stream-
wlse direction has been shown to assume a two-dimensional character in
planes normal to the stream velocity. A basically three-dimensional flow
is thereby approximated by solutions for a two-dimensionsal crossflow, and
as a consequence, relatlvely complex configurations can be analyzed within
this slender-sirplane approximation. Moreover, for configurations with-
out thickness, the solutions give the first-order epproximation for the
flow at transonic speeds, and the restrictions on the slenderness are not
so severe as at subsonic or supersonic speeds. The slenderness concept
has been applied to the analysis of a varlety of configurations since the
investigation of Jones (ref. 1) on the 1ift of low-aspect-ratio wings.

The results of many of these studies are presented in references 2 and 3
together with a discussion of the underlying basis of the theory. Most

of these investigstions have been restricted to wings with unswept trailing
edges and therefore have not had to account for the shed vortex sheet in
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the evaluation of the forces and surface pressures. Some exceptions are
the studies of Lomax and Heaslet (ref. %), of Mirels (ref. 5), and of
Mangler (ref. 6). The indirect problem of determining the trailing-edge
shape of flat-plate wings for & prescribed span loeding is treated in
reference 4, end the 1ift, pitch, and roll solutions applicable to flat-
plate wings with swept trailing edges are treated in references 5 and 6.

The present study 1s concerned with the development of genersal solu-
tions for the flow past arbitrarily cembered slender wings with swept
tralling edges and the subsequent applicetion of these results to the
calculation of the additional load due to the deflection of a trailing-
edge control surface. The engineering usefulness of the solutions for
arbitrary camber distributions 1s somewhat limited since the effort
required to obtain numericel results is not Justified in general for

the slender-wing approximstion; their primery value 1s to show some of
the genersl features of the load distribution. The control-surface solu-

tions as well as solutlions for the loading due to pure twist, however,
can be evaluasted without serious difficulty.

The method of constructing the solutions is presented in section 1
and the general solutions for symmetric and antisymmetric spanwlse loading
are developed in sections 2 and 3. Section 4 presents the additional load
due to the deflection of a flap or aileron as determined from these gen-
eral equations. One example 1s presented to illustrate the method of
solution for the effect of pure twilst on the loedlng, and calculations
are presented for the additional loading due to an alleron. A list of
the more important symbols is glven as sgppendix A.

1.~ EQUATIONS OF SLENDER-WING THEORY FOR LIFTING WINGS

In the slender-wing concept the spanwlse extension of the wing is
considered small compared with the length, and in the neighborhood of
the wing the flow fileld assumes a two-dimensional character which for
1ifting wings is determined by solutions of the two-dimensional Laplace
equation in planes transverse to the streem direction. The solutions
for 1lifting wings are applicable throughout the Mach number range since
the slenderness spproximation cesuses the Mach number to vanish. Although
the character of the solutions is two-dimensionsl, the three-dimensional
aspects of the wing problem enter through the expansion or contraction
of the wing in the tramsverse plane end through the irrotationality con-
ditions. The Kutta condition is required to render solutions of wing
problems unique whenever the trailing edge is of the subsonic type, and
in the slender-wing spproximation this condition 1s imposed on sll swept
treiling edges. The character of the flow in & plane normal to the
stream directlion depends upon the admissible behavior of the velocity
et the edges of the wing. Linearized theory requires that the veloclity
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have a square-root singularity along subsonic leading edges while the
velocity is regulasr along the trailing edge (by the Kutta condition)
and along a slde edge since the loed must vanlish there. These require-
ments of linearized wilng theory also apply in the slender-wing
approximation.

Three regions are indicated in sketches A and B which characterize
the four types of solutions
for wing plan forms with ¥ = 1(x)
swept edges. The edges
y = +1(x) and y = +t(x)
extend from the apex and
the intersectlon of the
tralling edge and root
chord, respectively, to the
meximum stresmwlse extremity
of the wing. The wing semi-
spen 1s denoted by s, the
value of x at the inter- 11
section of the trailing edge !
end. root chord is denoted l T III (m
by c, and cy 1s the value

of x at the position of Sketch A
meximm span. The plen
forms shown In sketches A
and B differ in that c > cy

in the former snd ¢ < cqp

in the letter, and the solu-
tlions in region 1II differ
for the two plan forms. In ¢y —————————> x
region T the edge 11(x) is
&8 leading edge and the veloc-
ity is singular there. 1In
region II vortices are shed
from the edge 1(x) for the l

wing of sketch A, and for | I o [ I
the wing of sketch B, vor-
tices are shed from the edge
t(x) while the velocity is
singuler on the leading edge
2(x). Vortices are shed from all edges in region III, and by the Kutta
condition, the wvelocity is reguler on these edges.

Vortex
sheet

Q
-
[¢]

¥y = x)

Vortex
sheet

Sketch B

The slender-wing approximation affords a considerable simplifica-
tion in the analysis since the governing differentisl equation for the
disturbence velocity potential is Laplace's equation expressed in coordi-
nates normal to the streem dlrection. Conseguently, with the stream
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velocity in the direction of the x-axls, the solution can be constructed
from the complex velocity V(x3¢) = v(x;y,z) - iw(x;y,2z) vwhere € =y + iz
is the complex varisble and x occurs only as a paremeter in the velocity.
The queatitities u;- v, and w are the disturbance velocities in the x-,
y-, and g-directions, respectively.

In each of the three regions (sketches A and B) the solution can be
reduced to a mixed-boundary-value problem congldered by Cheng and Rott .
(ref. T7)3 namely, the evaluation of a complex function in a half-space
when the real and Imsginery parts are prescribed alternately along seg-~
ments of a line. With the mean camber surface defined by z = Z(x,y)
end with the subscript o used to denote values on z = +0, the real
and imasginary parts of V(x;f) on =z = +0 are alternately given in

regilon I Bince wy = gé on the wing and v, 1is zero off the wing. In
X

regions II and III, however, the real and imaginery parts of V(x;{)

are not slternately prescribed on =z = +0 since vo 1is not specified

on the tralling vortex sheet. Differentiation of V(x;{) with respect
to x glves a functlion with the desired properties since

and by the irrotationality conditions,

Ve(x;8) = uy ~ 1wy

Thus the real end imaginary perts of Vx(x;{) are prescribed alternately
on z = +0 since uoy vanishes everywhere off the wing, becasuse the

pressure coefficient mudt vanish there, and Wox is known on the wing.

The prescribed valugs of the velocity components and their derivatives

on 2z = +0 +together with the requirement of vanishing velocity et infin-
ity and the specification of the nature of the veloclty at the edges are
sufficient for the determinmtion of the solution In each transverse plane.

Solutlon of Mixed-Boundary-Vaelue Problem
The method of solution of the mixed-boundary-value problem for the

upper half-space presented in reference 7 is based on the well-known
integral relation

V(C)=v—iw=%£:2‘-g&10—n‘3'ﬁ=-%Iwﬁlﬁ(g)]zzmdﬂ (1.1)
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for determining the complex function V() from a lmowledge of the
imaginary part on 2z = +0. Consider vy and Wy to be prescribed

alternately along segments of =z = +0. If a complex function r(f)
cen be determined, which is real on the segments where wg is prescribed

and imeginary on the segments where vy I1s prescribed, then the imeginary

part of the function V(§)/r(f{) is known everywhere on z = +0 and from
equation (1.1),

e . _1 " —4 I[‘_"ﬁﬁl} an + P(&) (1.2)

r(£) T dweb - |80

wvhere I denotes the imaginary part.

The integral term in equation (1.2) does not provide a unique solu-
tion since a fumction P({) which is resl on 2z = +0 can be added with-
out aeltering the prescribed conditions. Cheng and Rott (ref. 7) have
shown that, with wo prescribed on the N segments ranging from by

to bk, the function =»(f) is of the form

1 i.m
r(g) = 1 kzjrl (¢ - bk)amk(c - B ) T

where m and W@ are positive or negative integers. The order of the
admissible singularities at the edges dlctstes the, values of me and Ek

for a particular problem. The function P({) is & polynomiel in ¢{, the
degree of which is established by the requirement that the velocity wvenish
at Infinity. The solution for the lower helf-gpace is known by symmetry.

Solution in Region I

The application of equation (1.2) to region I gives the ususl form
of the slender-wing solution. From the boundasry conditions on 2z = +0
in region I, the real part of V(x;{) is zero for |y|> 1 end the

imsginary part 1is prescribed for Iyl < 1. BSquare-root singularities
are permitted In the veloclty at the edges, and the function r(t) 1s
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%
1 . The requirement of venlshing wveloclty et infinity dictates

that P(x;{) 1s at most a function of x, and since there is no net
clirculation in the crossflow plane, this quentity is zero. From equa-

tion (1.2),
2 2
V-2 (2.5
£ -1

V(x;8) =

1
ﬂ\/—'g—aiﬁ \/:-'L wo(x;3m)

The velocity component vo(x;y) 1is glven by equation (1.3) for
-1 5 y S1 on z=40 and the veloclity potential on the wing is obtained

by Integration as
¥
fz vo(x;n) dn

ﬂ fl v(x;n) dn (1.%)
* -1 \/12 - 12(y - n)

where v 1is given by the indefinite integral v(x;y) = ‘/pwb(x;n) an

Po(x;7)

since a constant can be added to v without altering the potentisal.

The function wo(x;y) for y > 1 is required to determine the
solution in region II for c¢ < cy, &nd from equation (1.3),

1 \/ 2 _ 2
Wo(%57) = - — f wo(x3n) =T aq (y>1) (1.5)
ﬂ\f _ 2 Y- y -

*Where no confusion can erise, as in equation (1.5), the argument
of 1 (and also of the functions t and £ introduced subsequently) is
not explicitly indicated in the remasinder of the report. The argument is
either x or the streamwise variable of Integration §. The particular
quentity in question is clear from the context and is stated explicitly

for the final equations.
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Solution in Regions ITI and III

The solution in region II for ¢ > ¢y 1is structurally similar to

that in region I and 1s easily evaluated. The determinstion of the pres-
sure 1in region II for c¢ < c3 as well as the solution in region IIT is

most readlly accomplished by considering separately the cases of symmetric
and asntisymmetric spanwise loading. TFor these cases, only the function
Vi(x3¢) 1s evaluated in this section and the pressure is determined in

sections 2 and 3.

Solution in region IT for ¢ > c;q.- The trailing vortex sheet lies
in the region ly[> 1 in region IT for c > c¢; (sketch A). The quantity
Woy 18 known from the boundary data for -1 Sy S 1 and Yo, 18 zero
for 'yl > 1. The Kutta condition must be satisfied on y = *1; conse-
quently, the velocity is regular and Vy has a square-root singularity

on #*l. The appropriste function r(f) is ———E—-, and from equa-
;2 Y-

tion (1.2),

(1.6)

Vx(x38) = \]———;—2 f Woyx

The function P(x;f) is at most a function of x, and it can be
shown readily that this function must be zero to satisfy the Kubtta con-
dition. The quentity' uoy 1s given by the resl part of equation (1.6)

on z = 0, and since wg 1s zero off the wing, the dlsturbance veloecity
on the wing is determined by lntegration from -1 to y sas

uo(x5y) = f ——d”—- f wox(xsn) 12 - 0 S

Interchanging the order of integration and integrating by parts gives
the streamwise disturbance velocity as
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wo(x;y)

V \/ﬂ vx(x3n) dn (1.7)
Vi2 - n3(y - )

where vy = L/nwbx an. Comparison of equations (1.4) and (1.7) shows

that uo(x;y) in region II for c > ¢y 1s given by the same integral
expression as gg(x3;y) 1in region I with v(x;y) replaced by vy(x;¥).
In region II for c > cy the slope of the edge y = 1(x) is less than
zero and this region of the wing supports load provided Wox does not
venish everywhere in region II. For the flat-plate wing, wo, vanishes
and sections downstream of the maximum spen support no leoed. This is

the result obtained by Jones (ref. 1).

The function Vx(x;§) in region II for c¢ < ¢y.- In region II for
¢ < ¢q, the tralling vortex sheet lies between the two wing panels
(sketch B). The quentity ug, 1s zero for ly| >1 and |y| <t, and
Woyx 18 known on the wing. Square-root singulerities are admissible in

the velocity on the leading edge; comsequently, Vyx(x;{) has a three-

halves-power singulerity there while the velocity 1s regular on the
trailing edge and Vx(x;{) has a square-root singularity. The appro-

priate function r(§) is 1 , and from equation (1.2),

3/2
(gz ) Z2) €2 . 42
Vi(x;8) in region II for c<cy; is

i 3
Ve(x;8) = ;(ga-T);/—a—ga—-:ﬁ:f:z Vox(x;"l) v‘l t2 f Vox(x,fl) (12-1'12) 'ﬂ 42 c_'); + P(x;8) (1.8

where the coefficients in the polynomisl are fumctlons of x.

The function Vy(x;{) in region ITI.- The solution in region IIT
differs from that in region II for c¢ < c; only in that the velocity is
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regular on all edges in the former since the Kutta condition must be
catisfied on both 1 and +. The function r(f) then is
i

\nga _ 12)(§2 _ 2)

, and from equation (1.2),

. i -t . a t . " B .
Vx(x;8) = WELI "ox(x,ﬂ)\lzla"\z) (ﬂa'ta) E?; +L “Ox(xyﬂ)\f(zg ‘12) ("12"'52) g;'_l;l' + P{x; ;)} (1.9)

2.~ WINGS WITH SYMMETRIC SPANWISE LOADING

The expressions for the potential in region I and the disturbance
velocity uo in region II for ¢ > cp can be specialized for either

symmetric or antisymmetric spanwise loading and the lineasrized surface
pressures are obtained directly from these quaentities. In region IT
for e <ecy and in region III it proves convenient to meke use of the

spenvise symmetry conditions at the outset to evaluate the surface pres-
sures. The surface pressures for symnetric spanwise loading are developed
in this section and those for antisymmetric loading are presented in
section 3.

For symmetric spanwise loading wolxsy) = wo(x;-y), and the surface
pressure coefficient in region I is determined from equation (1.4) as

l 22

2 o P 412" L dn
Op = -0, = 5 | Vo lxsn)los ———an+ —===j, wolasn) === (2.1)
o L -y aVl -y2 Vz -

12_q2

where the prime on 1 denotes the derivative with respect to X. In
region IT for c¢ > cy from equation (1.7),

5
: l*\f%—'fé
== aq (2.2)

= -2ug = 2 wo.(x;m) 108
it X
2 _ 2

o] 1-
12 . g2
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From these equations the pressure is seen to be discontinuous at the
boundary of regions I and II for c > cq if 1'(cy) is different from

ZEY0.

Solution in Region II for c < ¢g

Pressure.- For symmetric spanwise loading the Integration of equa-
tion il.gi can be carried out over the right wing panel to give

3

JEY = i . v ) 2 2\3/2 .24
Ve(x38) = P(x,c)-zfc w°x(x,n).<z -n) -t 25—:5 (2.3)

The symmetry condition requires that the polynomlal be an even function
of {, and for the velocity to venish at infinity, P(x;¢) = A + Bt
where A and B are functlons of x. The quantity Uoy is given by

equation (2.3) for t+ Sy S 1, and since ug 1s zero off the wing, the
disturbance veloclty on the wing for + s ¥y S1 is

J
w(xsy) = J[; Uoy 4N

and after some reduction

uo(x3y) = - ——t—o|(A+B12)E(F, k) - (A+BER)F( @, k) +(A+B1R)L, yot? -G(x;y)
«(12.42)]" 1,242
(2.4)

vhere F(@,k) and E(@,k) eare incomplete elliptic integrals of the

I 2 ya
first and second kind, respectively, sin ¢ = 1——:———, the modulus k
2 2
1 -t
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is given by k2 = 1 -~ —, and
1

3

2
n2 - 2 1 dn

EJ[‘Z a fz vox(x31) (12 - 2)
Ty (;2 - u2)3[2‘fp2 _ 2 Yt x w2 - 2

a(x;y) =

(2.5)

The sign f denotes the finite part of an integral. Satisfylng the Kutta

condition at y = t gilves the streamwise disturbance velocity as

2
-2, F(g,k)

2 - 42 K

G(x;t) - G(x;y)

uo(x3y) = - —A+ B2 _lgg ) o ¥
(12 - +2) L
(2.6)

vhere Z(@,k) = E(@,k) - %F(gf,k) is the Jacobian zeta function.

The functions G(x;y) and G(x;t) are evaluated in appendix B.
These functions can be reduced to a single integral involving elliptic
integrals and related functions. The combination of these two functions
which occurs in equation (2.6) can be expressed in terms of the quantity
in brackets in equation (2.6) and a thets function. With the use of
equation (Bh) the pressure coefficient in region II for c¢ < ¢y ‘then

becomes

1
Cp = -28(x)1"'|%(F,k) + %’-\h’z—a—'fy; +% IG o (x3n)0(x57,1) dn

(2.7)

where the unknown quantity S(x) which is related to A and B by
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is introduced to facilitate the analysis. The function Q(x,y,n is
expressed, in terme of an infinite series by equation (B3). Equation (2.7)
is equivalent to that obtained for the pressure coefficient for the flat-
plate wing in reference 5 with the addition of the integral involving
0(x;y,n) and the integral in the definition of 8(x).

Integral equation for S(x).- The Kubta condition gives one relation
between A and B and an additional relation is required to evaluate
these functions, or equivalently, the function S(x). Since the solution
hes been comstructed from wo, whereas the surface boundary condition is
in terms of wo, the second relation 1s that the solution must give the
prescribed w, on the wing. The function 8(x) 1is determined by a
procedure essentially the same as that used by Mirels (ref. 5). First,
wo on the wing is expressed as

X
volx;y) =f wa(E.;y) 1
-00

where it 1s essential that y be greater than 1(c) for the path of
integration, since for y < l(c), the relation 1s an identity and gives
no condition on S(x). Separating the Integration intc the three parts
- to ¢, e to 1-Xy), amd 17(y) to x glves the equation

1" Hy)
Wo(l'l(y);y) - wo(esy) =f 7 WOg(é;.v) at (2.8)

c

where wb(Z’l(y);y) is the prescribed value of wg &long the leading
edge and wo(c;y) 1s the value of the downwash off the wing in region I
and is given by equation (1.5) with x = c.

Equation (2.8) provides an integral equation for the determination
of 8(x) but involves both the unknown function S(x) and dS/dx; the
functlon dS/dx arlises 1n the course of evaluating the finite part of
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the integral. An equation in terme of S(x) only is obtained by inte-
grating equation (2.8) from y = 1(c) *to y = 1(x). Then,

7:(X) 1( )
[WO l(Y),Y) - wo(c:Y):! dy = f d-f.f * <§JY) dy (2.9)

where the order of integretion of the double integral has been inter-
changed. The region of

integration of the right- (

hand member of equa- x,1(x))

tion (2.9) is shown (e,2(x))
shaded in sketch C.

The expression for
Wo§ appearing in the

integral of equation (2.9) 7 = t(x)
is obtained from equa-
tion (2.3) for y > 1.

Satisfying the Kutta con- ' S
dition from equation (2.4)
gives a relastion between Sketch C

the functions A and 3B,
and the polynomial can be
expressed in the form

P(x;¢) = A + Bt? = -ﬂ,(ﬁe - 12) A + B2 /E = t2) + G(x3%)

“1(12 - taj\x 2 - 12 K

where K and E are the complete elliptic integrals of the first and
second kind, respectively, with modulus k. Then, when the integretion
1s performed, the inner Integral in equation (2 9) becomes

T 1
-72 ) ¥op 4y = a(t31(x)) + F(—BI’{QG(;;t) +ArmB |« (a =L 1 ) 2] (2.10)

;1(12 - t2)l_ \j7.2(x) -12 VZE(x) - %
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where Ag(6,k) 1s Heuman's lembde function (ref. 10), k' dis the
complementary modulus, and

k'=\/l-k2=% sin § =

15(x) - 12
12(x) - £2
The function G(x;t) is given by equation (2.5) with y =t and

3

1(x) 1 3
(851(x)) = 2 &y (£3n)(22-72) |n2-¢2 191
o g o e

(2.11)

The functions G{&;t) and g(&;1(x)) are evaluated in appendix B.
These functions can be reduced to a single integral with the integrand
expressed in terms of elllptic integrals and related functions. The
combination of the two terms which aerises in equation (2.10) can be
expressed in terms of the quantity in brackets in equation (2.10), a
theta function, and elliptic integrals. From equations (2.10) and (B6),

1(x) .
f ) vog (£5¥) a8y = B(£;1(x)) - 8(£)2'(8) g-’\o(;:k) + k1 1(x)
1 Vze(x)_za\/lz(x)_te

(2.12)

where

2

H(t;1(x)) =j;

In equation (2.13), K' is the complete elliptic integral of the first
12 - nz
12 12

vog (£51) [F(e’ki;),::(w’k) - P(f{’:")] an (2.13)

kind with the complementary modulus k' and sin o= The
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function T(&3;7n) is evaluated from the series given by equation (B9).

From equations (2.9) and (2.12) the final form of the integral
equation for S{(x) is

M(x) = fx s(e)1' (&) g‘“"(e’k) + K2 () s (2.14)

K Vi2(x) - 12 \12(x) - 2

where the left-hand member is

1(x)
M(x) = fl } [Wo(cw) - Wo(l'l(y);yﬂ dy +fx H(g;2(x)) a8 (2.15)
C

(e)

The quantity wo(c;y) 1s given by equation (1.5) with x = ¢, and
wb(l'l(y);y) is the prescribed value of W, along the leading edge.

In equations (2.13) end (2.14) 1, %, and k are functions of the
varisble of integration ¢ where the argument is not explicitly indi-
cated. The kernel of equation (2.1h4) is equivalent to that given by
Mirels for the flat-plate wing at angle of attack . For the flat
plate, W, venishes; hence, the function H(E;1(x)) end the integral

in equation (2.5) are zero and M(x) = « Vlz(x) - 12(e).

Equations (2.7) and (2.14) together determine the pressure in
region II for c¢ < c;. Equation (2.14) can be inverted by numerical

methods to obtain S(&) by a method similar to that of reference 5.

(See sppendix C.) The Jacobian zeta function and the Heuman lambda
function are tabulated functions (refs. 8, 9, and 10, for example). The
functions n(x;y,n) and T(t;n) which arise in the equations for the
pressure coefficient and M(x), respectively, are determined from an
infinite serles. These series converge rapidly, however, and the evalua-
tion of Q(x;y,n) and TI(&;n) offers no serious difficulty.

Celculation of the pressure for x near c.- The integral equa-
tion (2.1Lk) end the expression for the pressure coefficient (eq. (2.7))
can be gpproximsted to give a somevhat simplified as well as useful
solution for x near c¢. In this neighborhood, the kernel of the inte-
gral equation can be approximated and the inversion for S(x) can be
obtained in a closed form. The integral equation is approximsted by
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kl
X ] —
M(x) = L S(e)k - 2g(e) [ 4+ S| g
* fc [—_—__le(x) 2 7 ¢ j; log n

which is equivalent to that given in reference 5. The immer integral is
the logarithmic integral (tabulated in ref. 11, for example) and

g: . The quantity in brackets is independent of x, and the

inversion of this integral equation of the Abel type is

k!
8(x)2(x)1 "' (x) = _LLZ 7 M(g)11' at
G 4 (2 0 108 M T x d-xf \/2,2(x) - 12

(2.16)

where k and k' are functions of x. From equation (Bll) the func-
tion H(E;1(x)) for x near c¢ is

H(E;1(x)) = -f— 7':"; = 7’2f Wog (§,n) \/ + Z(w, k)| an  (2.17)
1=(x) .

The function Q(x;y,n) which arises in the evaluation of the pressure
is approximated by the first term of the series representation as

~

Q(x;n) = Y log EM (x near c)
2 sin(o - T)
_ (2.18)
2 . )
1+ 2'2 - yi
a(x;n) = % log Ul (x = ¢)
12 - 2
1 -
12 _ 2
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where

F(w, k) x F(¢,k)

g = =
K 2 X

I\DI‘A

It can be shown that S(c) depends on the camber distribution at
x = ¢ through the relation

2(e) WO(C,T] dn

s(e) = - 2
© Vi2(e) - 92
and since Zz(¢,1) = -ﬁ 12(c) - y2, comperison of equaetions (2.1)
c

and (2.7) shows that the pressure is continuous across the boundsry of
regions I and II for ¢ <cq if 1'(e) 1is continuous.

Solution in Region III

For symmetric spanwise loading equation (1.9) can be written as

1
Vx(x;8) = z P(x;8) + 2 | wo(x;m)\/(22-92) (n2-¢2) L.20 dn
X ,t\/<§2_7,2) (g2-t2) L Ox \/< )( ) §2-712
(2.19)

The condition of symmetry and the requirement of vanishing velocity
at infinity determine P(x;{) = A where A is a function of x only.
The quantity uoy is given by the real part of equation (2.19) , and

integration gives

..z i (2202 (n2t2) 1 dn _ A v a
uo(x;¥) f W vog(x3m) (1 n )(’1 % )u&nz x .,/; 22 (uz_ta)
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Satisfying the Kutta condition at y = t determines A. Interchanging
the order of integration and integrating gives the pressure coefficlent
in region III

A 2 2
_ L ) fn -t F(8,k) .[x
Cp= - oy ‘j; Wox(x;ﬂ) 'Z-é__nzﬁ(e;c@,k) - —.._..K’ H(E,mz,k):]n dn

1
= % L[; woyu(x5m)0(x35,7) dn (2.20)

where H(e,aﬁ,k) is the elliptic integral of the third kind with the
z2 2
-t
12 -

the substitution of equations (B2) for the elliptic integrels. From
equation {2.20) the pressure coefficient in region IIT is zero only if
Voy 18 zero. Comparison of equation (2.20) with equations (2.1)

and (2.7) shows that the pressure across the boundary of regions II
and IIT is discontinuous for c¢ <cq if 1'(cy) # O and is continuous

for ¢ > cy. Thus, for either ¢ > ¢ or c¢ < ¢y, the surface pressure
1 1 1

is discontinuous across the plane normel to the stream direction which
resses through the wing maximum span unless 1' i1is continuous and zero
at x = cy. Further, the surface pressure is continuous across the plene

passing through the root chord if 1'(c) 1is continuous.

parameter of = 3 the lest form of equation (2.20) follows from

Lift

The 1ift can be determined from the asymptotic form of V(x;¢).
For a wing, the function V(x;{) for lerge velues of { is of the form

V(x;t) = - Zmam;-<m+l) (2.21)
m=1

From reference 5 or 12 the 1ift carried by the wing upstream of x is
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L = I(kng_8q)

where q_ 1s the stream dynamic pressure.

The coefficlent &, in region I is determined from equation (1.3);
thus I becomes

2
L= -hqu Wo(x;n)\{l2 - 12 dn (2.22)
-1

In region IT for ¢ > ¢y the function dal/dx is obtained from
equation (1.6), and dL/dx is then determined as

dL t 2 _ .2 |
% -uqu_l wox(x;'q)\,l - 12 an (2.23)

Similarly, the function dL/dx in region IT for ¢ < cq is determined
from equation (2.3) as

' 1
ZEX_= hthml[ﬁi(x)l'(x) (1 - %) - gﬁ Vo, (%31) Z(w, k) dﬂ (2.24)
From equation (2.19), dL/dx in region III is

]
- -8q. j; o (x5m)Z (k) dn (2.25)

s

and the total 1ift is obtained by integratlon.

The 1ift supported by the part of the wing in region I is dependent
only upon wo(e;y) (or wo(eysy) for ¢ > cj). In regions II and III,

however, the contribution to the 1lift depends upon the camber distribution
throughout these regilons.
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Wings With Twist

The slender-wing solutions assume thelr simplest form for the flat
plate and for wings with twist but no camber. For these condltions the
wing supports load only where @' > 0. The flat-plate solution has been
given in references 5 and 6, and the solution for twist proportional to

y2 1s developed here to illustrate the use of the equations.

Let wo(x;y) = —2— y2 where a 1s & constent. Then from equa-

t<(c)
tion (2.1), the surfece pressure coefficient for x S ¢ is
& 2N
CP = -2CPOX =

and from equation (2.22) the 1ift carried by the part of the wing upstream
of x in region I is

zh
12(c)

L=-%g
2

The loading is zero In reglons II and III except for region II with
¢ < cj. The solution in region II with c¢ < ¢y requires the eveluation

of the function S(x). Only the terms wo(cj;y) and wo(l‘l(y);y) con-

tribute to the left-hend member of the integral equation for S(x); from
equation (1.5),

wolesy) = & [2;13 - y13(e) - aya\/yz - za(c)]
222(c)\/y2 - 13(e) |

y2. Then from equation (2.15), the left-hand

and WO<Z'l(y);y) ==
1%(c)
member of the integral equation is

M(x) = - —i—[E'LQ + Ze(c)] V;a - 1%(e)

622(c)
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The inversion of equatlon (2.14) for x near c is given by equa-
tion (2.16) as

kl
S(x) = - =& [ b du 223(x) (2.26)
2k|ly Jo log u 12(e)

and S(ec) = - & From equation (2.7) the surface pressure coefficient
2

for c<x<cl is

y2 - 8

Y

= - ! L
Cp 25(x)1'|2(¢g,k) + !

and at x = ¢,

From equation (2.23) the lift per unit length for ¢ <x <ec; 1is

8L - heg s(x)12'(1 - E
R

and at x = c,

i

= 2nq all’
ax oo

Comperison with the expressions for the 1ift and the pressure coef-
ficient in regilon I shows that dL/dx and Cp are continuous across

the boundary of regions I and II if 1' is continuous at x = c.
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The function S(x)/a computed from equation (2.26) is compared in
figure 1 with that calculated by the numerical method given in appendix C
for e wing with straight edges (1 = myx and t = mg(x-c)) for 7= 1, -

2, and 3. The interval for the numericel method was teken as 0.05, and
Simpson's rule was used to evaluate the integrals. The results show
that the approximste inversion provides a very satisfactory solution
even when k differs appreclisbly from unity.

5.~ WINGS WITH ANTISYMMETRIC SPANWISE LOADING

The pressures in region I and region II for c¢ > cy; for antisym-

metric spanwise loading follow directly from equetions (1.4) and (1.7).
The pressure in region II for c¢ < cy; and the pressure in region III

can be determined in a manner similer to that for the case of symmetric
loading.

For antisymmetric spanwise loading, wo(x;y) = -wo(x;-y) and the
surface pressure coefficient in region I is determined from equation (1.4)
as

A »
2 y_yl' ¥ wo(x3n)n dn
Cp = =29, = = o, (x31)1og dn +
x X n \[2 2Jo 2 2
O 1 7; -y ?l -Tl
(3.1)
In region IT for ¢ > ¢y from equation (1.7),
2

Thus the pressure 1s discontinuous at x = c3, the boundary of regions I
and II for ¢ > c3, if 1'(cy) 1s different from zero.
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Solution in Region II for c < cj

Pressure in region II.~ For antisymmetric spanwise loading, equa-
tion (1.6) becomes

3
Ve(x38) = = 28 f zwox(x;n)(lg-na)aﬁazz D+ P(x38)

e R L2un

(3.3)

The symmetry condition requires that the polynomial be en odd function
of ¢, and since the veloclty must venish at infinity, P(x;f) = Af + BES
where the coefficients A and B are functions of x only. The quan-
tity uoy is given by the real part of equation (3.3), end since ug

is zero off the wing, the disturbance velocity on the right wing panel
is

y
uo(x;y) f; w0, (x31) dn

A E@-ta B[ . _1[12-42 12 242
+ —(gin > % +

jt(7'2_ 42 )Vza_ye 7 VI 1242 7'2_3{2

TOj\

1 1
:gt‘]i’ (la_p;);% u2_-b2~/; Wox(x;q) (12—112) ‘nz—ta %

With an interchange of the order of integration and after integration
on p, it can be seen that the Kutte condition requires that B equal

zero. The linearized expression for the pressure coefficlent on the
right wing panel then becomes
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fl32-22)(y2-42)

L 1
Cp = -2u5 = ,% Wo, (%371)1og W(ia’yz)(”a‘g;dﬂ - m(;:)”'v# (3.4)
. N (la_nz) yz_tz) 1By
(22-y2)(n2-£2)

end is of the opposite sign on the left panel. The function Q,(x), which
is related to the coefficient A by

Q(x)11' = ._(_%_2.)_ A+ 2]: wox(x;n) \/(7,2 - ,12) (-q2 - t2) an
s -t

is introduced for convenience.

Integral equation for Q(x).- The function Q(x) can be determined
from an integral relation in a menner similar to that used to evaluate
S8(x). The procedure is to integrate Woy OVer the shaded region in

gsketch C. Then the integrel relation is

j;zi};) [Wo(l'l(Y)W) - Wo(c;?f):l dy = j;x dg f;Z(X) w°§(g;y) W

(3.5)

where Wy (l'l(y);y) is the prescribed value of w, on the leading edge
and wo(c;y) is given by equation (1.5) with x = c. Substituting Wo§

from equation (3.3) into equation (3.5) and integrating on y gives the
integral equation for Q(x)

N(x) = fx a(e)1z’ (3.6)
C




47

NACA TN L4242 25

where the left-hand member is

1(x) VX
N(x) =L(c) [Wo(cw) - Wo(z'l(y);y)] dy + j; n(e;1(x)) 4k (3.7)

The quantity wo(c;y) 1is glven by equation (1.5) with x = c,
wb(l'l(y);y) is the prescribed value of w, along the leading edge,

and

h(g;1(x)) = - 2 fz o, (£51) tan—1 b2t - 12](112 - %) an  (3.8)
T Jg B [2(x) - 2](22 - 42)

In equations (3.4), (3.6), and (3.8) the argument of 1 and t 1s ¢
except where indicated explicitly.

Mirels' solution of the flat-plate rolling wing is & particular
example of these equations. For the rolling wing wy = -y, where @,
is the anguler velocity, and since w, 1s independent of x, the func-

tion h(&;1(x)) venishes and N{(x) becomes %-QXZ\’ZQ - 1%(c).

The numerical solution of equation (3.6) is readily determined by
the method of reference 3 once the function N(x) 1s evaluated. (See
appendix C.) For x near ¢, %t 1is small compared with % and can
be neglected, end the solution is glven in closed form as

Qi) (x) = 2.8 [T M a (3.9)

ndx J, \/zz(x) _ 42

The function Q(c) can be shown to depend upon the camber distribution
et x = ¢ through the relgtion

() y (c3n)n as

Qe) = - —=2—
: x12(c) ~/; ViR(e) - o2
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Solution in Reglon III

For antisymmetric spanwise loeding, equation (1.9) can be writteg
as

. _ . Ty '. - -2—- 22-2 -—d;n_ .
vx(xsg) ﬂ_————(gg__l’g)(gg_tg) 2§j; Wox(x,ﬂ)\/(z m )(n t ) ;2-112 + Af

(3.10)

vhere the polynomial is at most Af{ from the symmetry conditions and
the requirement of venishing velocity at infinity. Por t £y <1 on

z = +0, equation (3.10) gives Uoys end uy on the right wing panel is
obtained by integretion from 1 to y as

2 1
uo(x;y) = - 2 fy \/(12-22;2u2-t2) Ib Wo, (x31) (7'2‘"2)<"2't2)§;2:1§

vhere A is determined as zero by the Kutta condition at y = ©. With
the use of the linearized pressure relation end after an interchenge of
the order of integration the pressure coefficient for t £y £1 becomes

Y] 1+ (12 - Tle)( y2 - ta)
[

Cp = %’ Wox(x37) log KE’ i dn (3.11)
t Lo G2 - nR)(2 - +2)

(2 - P - +2)

and is of opposite sign on the left panel. Comparison of equation (3.11)
with equations (3.1) and (3.4) shows that the pressure across the boundary
of regions 1II and I1iI is discontinuous for c < cq if I'(cl) ¥ ¢ and

is continuous for c¢ > Cy-.



NACA TN koh2 ) 27

The distinguishing feature of slender wings with cambered surfaces
as compared with £lat-plate wings, for either spanwise symmetric or anti-
symnetric loading, is that cembered surfaces carry load downstream of
the position of meximum span. The pressure 1s discontinuous across the
plane which passes through the wing maximm span wnless 1' 1s continuous
and zero at x = cy. Further, the pressure is continuous across the plane

through the root chord unless 1'(e) is discontinuous.
Rolling Moment
The moment about the x-axis due to antisymmetric spanwise loasding

can be evaluated in a manner similar to that for the 1ift (ref. 5). With
the asymptotic form of the complex velocity given by

V(x;t) = - Z magt~ (=)

m=1
the moment My, sabout the x-axis is
e = I(bmaep)

The contribution to the moment in region I for the part of the wing
upstream of station x, with the use of equation (1.3), is

1
My = -kqu ’vfo(x;n)\fl2 - n87q ay (3.12)
0

In region II for c¢ > ¢y, the quantity daa/dx is determined from the
asymptotic form of equation (1.6); then,

aMy v ,,fzz
E§—.= -hqmu/; wbx(x,n) 1¢ - 7 dn (3.13)
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and in regicn II for c¢ < c1, Qaa/dx is evaluated from equation (3.3)
and ’ /

éﬁ—x = 2nq, (7,2_1-,2) Q(x)i1' - ,Xﬁ_a_tajj;z wo, (x57) \/('52_.,]2) (n2-t,2) dn

(3.14)

Similaerly, in region III

%l:c{}_ = -hqwjlz wox(x;n)\/(lz - q2)<n2 - 'b2> dn (3.15)

The contribution to the rolling moment for the whole of region I depends
only upon wolc;y) (or wo(cl;y) for ¢ > cy), whereas the contribu-

tion to the moment in regions II and III depends upon the distribution
of cember throughout these regions.

4.- CONTROL-SURFACE SOLUTIONS

The evaluation of the pressure for cambered surfaces involves con-
siderable calculation since, in general, the various integrals must be
evaluated by numericel methods. The additional load due to the deflec-
tion of a control surface, however, is readily determined from the gen-
eral equations since many of the integrals can be evaluated enalytically.
Aside from the overall slenderness conditions required for the wing, the
control surfaces should also satisfy the same conditions. Solutions are
given for both symmetric and entisymmetric spenwilse losding and are
denoted as flsps and ailerons, respectlvely. These expressions apply
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to trailing-edge control surfaces with side edges such as those shown in
sketches D and E; similar
expressions for tip con-
trols can be obtained by
the same method.
y ¥y = £(x)
The leading edge of Yo
the control is defined by ——T-Yl
y = £(x) Emf(X—Xf). = x > X
On the right wing panel,
£' > 0 for the controls
of sketch D and f£' <O
for the controls of
sketch E. The coordi-
nates of the upstream and
downstream leading-edge
corners are (Xl:Y1) and

(x0,y2;, respectively,

end the control-surface
deflection is B, and is

positive for a downward
deflection.

Sketch D

The additionsal load
dvue to the deflection of a
control surface is obtalned
from the genersasl equations
for cambered surfaces by
setting wo = 0 on the

wing end w, = -8, on the

control surface. The quantity Woy is zero everywhere except on the
edge y = £(x) where w, is discontinuous. In each of the integrals
which contain Vo 88 & factor, the quantity Woy ;s interpreted as

the component of & Dirac delta function, and all such integrals are of
the form

Sketch E

‘jhwbx(x;n)F(x;n) dn = -8 |£'|F(x;2)

where the integration ascross the boundary y = £ 18 in the positive
y-direction; the value of the integrel is zero if the integration does
not extend across the edge y = f. The expressions for the loading spply
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to the configurations of both sketches D and E, with the (+) sign
epplicable for f' > O (sketch D) and the (-) sign epplicable for

£f' <0 (sketch E). The equations for the losding are directly appli-
cable for x7 1in reglon I and Xp 1in reglon ITI. The additional loading

is zero upstream of x; for any location of X3, and the solutions for
X > Xp, regardless of the locatlon of x5, are obtained from the equa-
tions presented by replacing f by y, end setting f' = O.

Flaps

Region I.- The pressure is zero upstream of Xq since w, =0 on

the wing, and from equation (2.1),

,_ 1+ 2 - y2
Cp =~ e lf'l log 12 - £2 . _2u <sin'li- sin-1 y—l)
n 2 2 2 1 1
- 12 _
:|_..\/7'___y v ¥
i 1222 |

From equation (2.22), the 1lifting force in reglon I is

)
= thqBe(f \12 - £2 - \sz- 24 12(sin"t £ - gyl 2L
L = thq Belf Nl yi =8 7 - 8o <

and the total 1lift in region I i1s obtained by setting x = ¢ where
c<c eand x=c vwhere c> cy.

Region II, c¢ > ¢y .~ From equation (2.2), the pressure coefficient
in region II for c¢ > c; 1is

2 . 2
1+ ——-——1_2 y2

CP=—2SC fll log 1 - f
% 2. 2

1 - ¥y

12 - 2
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The 1ift per unit length is evaluated from eqpatibn (2.23) as
dL 1 ‘/ 2 2
= = o) [f I 1= - f
i SQQC

and the total 1ift In this region is found by integretion from cp to e.

Region II, c¢ < ¢y.- The pressure coefficient for ¢ <x< c, is

given by equastion (2.7) as

Cp = -25(x)1'|2(@,k) + £ y2 - t2| 8¢

12 42

f'lﬂ(x;y,f)

where the function Q(x;y,f) is defined in sppendix B with n replaced
by f.

The function S(x) is evaluated from equation (2.14%). The quentity
wo(2~(y);y) 1is zero and the left-hand member of the integral equa-

tion (2.15) is evaluated as
_ 4 Be -1 )38 - 1%e) -1, ] 12 - 12(c 7'2_12()|:m_1£(c - sin-1 3'1]_
ne) = B2 ) v BTG vty N - i - s gy

1 m—l!—f(c) 12 - 1%(c) - ten-1 91, —__12 - 1¥(c) +fxﬂ(§;1(x)) ag (s.1)
|_z Vza(c) - £%(e)  YiBe) - yy® e

where H(£;1(x)) is determined from equation (2.13) as

H(g;1(x)) = =8¢

f,(g){ [F(e’k;::)'i(w’k) i} P(f&;'f) ]

and the function T(&;f) is given in appendix B with 17 replaced by £.
If xp lies in region II, the upper limit in the Integral in equa-

tion (4.1) is xp for x > xo.
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The leading terms in the function M(x) are O(I - Zz(c))l/2

whereas the contribution from the integral term is 0(1 - Zz(c))5/2
end for x nesr c,

M(x) =~ & -2:—9 sin1 % - sin~t % \12 - 12(c) + o2 - 1a(c))3/2

The term 0(12 - 12(c))?/2 contributes to a5/dx but mot to S(x) at
X = ¢. Higher order terms can be retained in the approximation to M(x)
to improve the representation of S({x). An slternate procedure which
facilitates the calculstione is to compute the function M(x) Ffrom
equation (L4.1) and then represent it in the form

m

25c\ﬁg—2_ -1 £(e) _ z [2 2 ]2:1
= m— -1 + in in 17=1
M(x) - (c) 8 o 8 Z(c) (c)
n=1
(4.2)
With this representation the function 8S(x) is eveluated from equa-
tion (2.16) in the neighborhood of x = c¢ as
S(x) = 28 Juloand &) | gapl T2 Mok [0 aw )y
xk i(c) I(c) y Jo logp
n
Z 8n (2n+ 1). Fl- 12(c) (k.3)

and at x = ¢,

8(e) = 25 sin~l 2284 £(c) - sin~t T
E3 1(c) 1(c)



NACA TN h2k2 33

The function S(x) can be eveluated by the method of appendix C in
regions where this spproximetion is not sultable.

The 1ift per unit length is determined from equation (2.24) as

&8

= lag 2 S(x)l'(l - %) + 3:rtzﬁlf'lz(w,k)]

2 2

where sin o= 15—:-25? and the totel 11ft in region II for e < cj
[ASI.

is obtained by integration from c¢ to ec.

Region III.- The pressure coefficient in region IIT for x < xo
is evaluated from equetion (2.20) as

Cp= - 5;‘ilf'lﬂ(x;y,f)

and is zero for x > xp. The 1lift per unit length is obtained from
equation (2.25) as

% = 881 £!| 2( k)

with 1 replaced by f in the definition of w, and the totel 1ift
over region III is obtained by integration from ¢y or c, whichever

is larger, to xo.

From the foregoing equations and the modifications for x > x5, it

can be seen that the additional loading due to the deflection of a flap
is different from zero only for x3 <x <xp Or c,, whichever is larger,

regardless of the location of x; and xp,. Further, the pressure and
lift distributions are discontinuous at =x; and x, and at cy for
xp > cq if 1'(ep) # O.
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Allerons

The equations for the additional loading due to the deflection of
en elleron are developed in the same manner as those for the flap except
that the basic equations are those for antisymmetric spanwise loading.
The solutions for the aileron ere somewhat simpler, however, since they
involve only elementary functions. The equatlions presented apply directly
to the configurations of sketches D and E with x7 1in region I and xp

in region III. The additional loading is zero upstream of x, for any
location of xj, and the solutlons for x > xp for any location of xo
are obtained from the equations presented by replecing f by Yo and
getting £' = 0.

Region I.- The pressure coefficient is zero upstream of x;, and
for x> x;, the pressure coefficient on the right wing panel is evalu-
ated from equation (3.1) ss

-—

(

\/12 _ 5’12 - sz _ fa)

Cp =B ’f‘llog

From equation (3.12), the rolling moment is

o= £ 5 0k [(12 w7 e fe)zlz]

and the total moment from reglon I is obtained by setting the argument
of 1 and £ equal to the smaller of ¢ or cj.

Region II, ¢ > Cqe- The pressure coefflcient in region II for

¢ > cq on the right panel is evaluated from equation (3.4) as
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2 _ 2

1+ £y =
2Be ., yyi2 - g2

Cp = - =2|¢'| 108

T 2 2

1c -
- £ y
Y{12 - £

From equation (3.13), the rolling moment per unit length is

R E F- \Iz2 - £2

and the total contribution to the moment is obtained by integration on
x from c; to c.

Region II, c¢ < c¢;.- From equation (3.4), the pressure coefficient
for tSysS1 is

- (22 - 2)(52 - +2)

¢p = - Z2fe| 208 (2 - (e - +8) 2q(x) 11"
L (22 _ fe)(yz _ 1-,2)
(22 - (2 - +?)

where Q(x) 1is determined from the integral equation (3.6). The quan-
tity wg (Z"l(y);y) is zero, and from equation (3.7), the left-hand
member of the integral equation is
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Izala(t)
12(0)—f2(c)

¥
- yl -tan"l Tl

+ fcx b(g;1(x)) at

(&%)
vhere h(t;1(x)) 1s eveluated from equation (3.8) as

_[_7:"‘-_(_;:) - 12](f2 - t2)
(20 - 2](a2 - )

n(g;1(x)) = E,?Elf'ltan-l

If xp 1lies in region II for c < cq, the upper limit in equation (%.4)
is xp for x > xp. The dominent terms in equation (4.4) are
1/2
o(‘z2 - 12(c))
2 /2
integral is 0(22 - Ze(c))5/ ; only the terms of 0(12 - Za(c)) /

contribute to Q(c) but the higher order terms contribute to dQ/dx
at x = c.

for =x near c¢ and the contribution from the

The function Q(x) for x near c is conveniently evaluated by
computing N{(x) from equation (4.4) and then representing it in the
form

0 - 2EF i 20wt ]
c)'yl

| S S S
¢ vlz(c)—fe(c) vla( 2 z[\‘lz(c)-fa(c) \’Ia(c)-ylé} ’

i —_ q[i2a2(e) (k.5)
=1
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1/2
The quentity in braces is the term O 12 - 12(0)) obtained by
expanding equation (4.4). From equation (3.9) then,

Q(X)Z=ZS°J7'(°)|_ 2e) __ N -I-z 1 A _|+
7 ]7,2 W12(c)—f2(c) V'-Ta(c)-ylil VZE(C)—fa(c) Vza(c)_ylaJ

i (2n+1)! 1 7,2-12(c)n
an

(4.6)
220(pn1y2 1(c) 1%(c)

n=1

and

a(e)i(e) = %[\/zzm - 322 - \[13e) - £2(0)

The function Q(x) can be evaluated by the method of appendix C in
regions where equation (4.6) does not provide a suitable approximation.

The moment per unit length is evaluated from equation (3.1%) as

dx

My _ &:qw(lz - ’cz) a(x)11’ + -2—:9- ;Ia_f%IE\/(la - fe)(fa - tzj (%.7)

and integration on x from ¢ to ¢ gilves the contribution to the
moment from the part of the wing in region II.

Region ITT.- From equation (3.11), the pressure coefficient in
region IIT for t Sy 1 1is
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1oy B2 - 22 - 42)
(2 - )2 - +2)
£2)(y2 - 2)

(12 _ ya)(fa _ ta)

L~
o~
n
1

and is zero for =x > Xp. Evalusting the integral in equation (5.15)
gives the rolling moment per unit length as

gx-d b be |t \/(12 - fz)(fe - t2)

and the moment from the part of the wing in region III is found by inte-
gratlon on x from c¢ or cj, whichever is larger, to X0

As in the case of the loading due to a flap, the additional loading
due to the deflection of an aileron is different from zero only for
Xy <x< x5 or c,, whichever is larger, regardless of the location of

X7. Similarly, the pressure and 1ift distributions are discontinuous
et x; and xp and at c; for xp>cy if 1'(cy) £ 0.

Example.- Calculations have been made for the swept-wing configursa-
tion with an ailleron
shown in sketch F. The

leading and trailing 7]
/

edges of the right wing

panel are defined by

1= mx and

t = m(x - ¢), respec- A

tively, and the relevant

constants are

mz = 0-5 mg = 1-5 X © ) -
i cyfe = 1.2

mf =

x3/c = 0.9 xpfc = 1.25
xpgfc = 0.75 8/c = 0.6
yl/c = 0.15 ye/c = 0.5

- g

Sketch F
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Q!

The quantity ~calculated by the numericel method of appendix C

is compared in figure 2 with that calculated from equation (L.6) with
m= 3. An interval of 0.02 was used in the numerical method. The coef-
ficients were evaluated so that equation (4.5) gave the correct value of
N(x) at x = 1.02, 1.06, and 1.20. The results show that the approxi-
mate equation for Q(x) provides a very satisfactory solution even when
/1 is not small compared to unity. For example, at x/c = 1.14, the
value of t/Z is 0.37 and the error is epproximately 5 percent. In
figure 3 the rolling-moment distribution is shown as a function of x/c.
The moment distribution 1s zero for x/c < 0.90 and x/c > 1.25; these
values correspond to the downstream and upstream extremities of the
aileron leading edge. Further, the moment distribution is discontinuous
at the boundary of regions II and III. The chordwise pressure distri-

butions for y - 0.2, 0.6, and 1.1 are shown in figure .,

1(c)

Langley Aeronautical Laboretory,
Nationsl Advisory Committee for Aeronautics,
Langley Field, Va., January 31, 1958.



Lo

NACA TN L242
APPENDIX A
SYMBOLS

wing root chord

distance from apex to position of maeximum span of wing

wing semispan
Cartesian coordinates (x is in the stream directilon)

dummy variables of integration

spanwise ordinate of wing leading edge

chordwise ordinste of wing leading edge

spanwise ordinete of control-surface leading edge,
£(x) = mp(x - Xg)

spanwlse ordinaste of wing tralling edge

upstream coordinates of control-surface leading-edge corner
downstream coordinates of control-surface leading-edge corner

control-surface deflection

nondimensional dlsturbance velocities in %x-, y-,
and z-directions, respectively

disturbance velocity potentlal
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=u/1wo(X;y)dy

V(x;t) = v = iw

L 1i£t

My moment about x-axis

Cp pressure coefficlent on the wing

P(x;¢) polynomiel in ¢

A,B coefficients of polynomial

4 stream dynamic pressure

By defined by equation (2.21)

a(x;y) defined by equation (2.5)

g(e;2(x)) defined by equation (2.11)

H(t;1(x)) defined by equation (2.13)

h(g;1(x)) defined by equation (3.8)

s(x) evaluated from.equation (2.14)

M(x) defined by equation (2.15)

Q(x) evaluated from equation (3.6)

N(x) defined by equation (3.7)

K,E complete elliptic integrals of flrst and second kind,
respectively, with modulus k

XK',B' complete elliptic integrals of first and second king,
respectively, with modulus k'

F(0,k),E(0,k) incomplete elliptic integrals of first and second king,

respectively
n(e,a2,k) elliptic integral of third kind

z(,k)

Jacoblan zeta function
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A (8,k) Heumsn's lambde function
S =
1
t

| S
=3

2 _ 12 .42
ot —7'2_112
m'e =1 - a?
o = sin-1 &

h =N

I\

5

1
]
o~ |ev
[15) BV
1 1
ct
[\)ql\)

I imaginary part

Qx;y,1) defined by equations (B3)

(e;m) defined by equation (B9)
g =% F(w,k)
2 K
o' 14 F(;‘é:k)
_n F(p,k)
T = E K

NACA TN L4242



NACA TN hok2
q=eP
q' = e3P
Subscripts:
o

X

y

values on z = +0
partial derivative with respect to x

partial derivative with respect to ¥
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APPENDIX B
EVALUATION OF G(x;y), &(¢;1(x)), AND RELATED FUNCTIONS

The solutions for the slender wing with symmetric spanwise loading
involve elliptic integrals of the third kind in region II for c¢ < c3

end in region III. These integrals which arise in the evalustion of
the functions G(x;y) eand g(t;1(x)) and in the expression for the
pressure in region III syre reduced to a form suiteble for computation
by their relation to theta functions. The functions a(x;y,n) and
(¢ ;n) s which are logarithms of theta functions, are readilly evaluated
in series form. These relations, as well as the reduction of the
elliptic integrals which arise in the solutlion for symmetric spanwise
loading, are gilven in reference 8, for example.

The Functions Relsted to the Pressure
With an interchange of the order of integration and with the use of

partial fractions, the function G(x;y) given by equation (2.5) can be
evaluated as

2 2_.2 o2 (2 12 2.2
o) =2 . n‘/tt y 25 ‘FJ;*- ? 'A[ B ]_ o2
G(x’y) "“/; Vox(x;"\) 1 12_1‘2 T 1842 12_y2+ 1212 E(¢:k) F(¢,k) I[(¢,cr, :k) dn (Bl)

where F(¢,k), E(d,k), and I(@,a2,k) are elliptic integrals of the
first, second, and third kind, respectively, and

=3 5 - P
sin ¢ = /1= k2 =1 - B2 o = o= B
22 _ 42 12 12 _ o2

For y =+, the argument ¢ is g? and the elliptic integrals are
complete.
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This elliptic integral of the third kind in equation (Bl) can be
evaluated in terme of the Jacobian zets function and s theta function.

For 1< a? < o,

, 2 2 :
H(¢;d'2:k) = - %‘ ﬁl}(¢:k)z_(w;k) - ﬂ(xiﬂ)]

Q (B2)
H(%,cz.,k) = - % ‘/—Tl- K Z(w, k)
where
)
1 sin(o + —r) sin{2mo)sin(2mT)
(x; ==1
(x57,7) 2 og sin(c - T) Z ¢ m sinh(2mp)
m=1
g (B3)
2 _
SR R
a(x;y,n) = -é— log 12 = 115 (for x = c)
[ y
1- ‘/12 o2
and
a 12 _ 2 2 K 2 K
—_ £ I,S'_ = "2P
P=3 7% =€

Fram the definition of the zeta function Z(@,k) = E(¢@,k) - %F(¢,k)

and equations (B2), the combination of the functions G(x;y) and G(x;t)
which arises in the expression for the pressure is
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1 ] 1
&(x33) -’—(ﬁéﬂ x5t} =- ;Z(—I:TE)[V-M%W-W,%: j; Vo (xin) Wla-nzﬁ"’hta)n an+2 L Yo lGusixa)an  (r>t)

(%)

G(xjy) - ?-({'-’51 G(xst) = 0 (y =t)

For x near c, the function Q(x;1) can be spproximated by the first
term of equations (B3).

The Functions Relsted to the Integral Equation
With an interchange of the order of integration and with the use

of partial fractions in equstion (2.11) > the integral on y can be
expressed as the sum of two integrals, and the function g(&;1(x)) is

evaluated as

i 2.2 2_.2
g(E;1(x)) ==2 | w__(g;1) 3‘,7‘ =1° J1(x) L -
ﬁj; og l¥n2.42 2 VEI-E(X)-IEJ[ZE(x)-t%

2.+2 2 12 1
F(o,k') + "2 ta E(e,k') + 7’2 te n(e,a'2,k' )\ ag (B5)
1c-% 1%y

where
2 - 12 2 _ 42
Sin e = l‘—(—}:)_—z— k' = E d)‘2 = l - d'2 =__n—__t__
V 12(x) - t2 l 12 . 2

From equations (Bl) and (B5), the quantity g(&;1(x)) + F-@-I?(—k-'-)- G(E;t)

which arises in the integral equation for S(x) can be expressed as
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' 2 (e,k}| p? o
s(!;l(x))+ﬂ9€5—)- o{2yt) - 1:-1-.2 lz(x;_:: 11‘2(:)_ - +§A° =1/, vo;(;m)wla-nz)(nz-t"’)n an+E(E;(x)) (B6)

where

1 h2 2|_2 2
. __2 . e - n=jl= - % 12 31 1
H(g;1(x)) —-;L Wog (£57) 1}%2 [ o(e,a’ k') - F(8,k') -

2 2 '
12 - 2 F(8,k') /x o )
2.2 K 1% a2k)| an (87)

and Heumen's lsmbds function (ref. 10) is defined by the relation

Ag(B,k) = %l;"_. F(e,k') + K E(e,k') - K-F(e,k'il

The parameter o'?2 is zero for 1 = t; then, I1(6,0,k') = F(0,k') and
the function H(E;1(x)) is zero. For 1 > t, the elliptic integral

I[(e,a,'e,k’) can be expressed.in terms of Heuman's lambda function and
a theta function as

7;2— 2 12 11y _ 1y o 1 T|2't2 ' - l. R
?Zﬁin(e,a ,k') = F(e,k') %E"zz_nzﬁr(e,k YAg(a,k )-r(g,qil (B8)

where

[ )
2 Z (-l)m"'lq'mgsin(sz' }sinh ‘ém(p'-c' ):I
r(e;n) = F(e,k") +tan'lJ B > (B9)
132 Z (-l)mq'mzcos(an‘r' }cosh I:Zm(p'-o" ):I

L m=1 J
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and

O L U
2 2

Substituting from equations (B2) and (B8) into equation (BT), meking
use of the definitions of Ao(w,k') and Z(w,k), and using Legendre's

relation EX' + E'K - KK! =2‘2. give the function H(E;1(x)) as

l ?
H(g;1(x)) = j; wog(e;n)[F(e’kK?E(“”k) F(f{’,“):l (_Blo.)_

For small values of 8, the functions F(6,k') and I(0,a'?, k') are

= - - . _
approximated by sin 6 = _Zé(ﬂ_—_l_z, and from equations (B7) and (B2),
17(x) - &

the function H(g;1(x)) for x near c becomes

2 2
5(51(x)) =-§\/z22’;; - izf oy (£31) "\/“ - n2 + 2(0,k)| an (B11)

An aslternate form for x near c 1s obtained by meking use of the
approximation I(6,a'2,k') = é tan~L(a tan 8) + 0(k'2). The function
H(t;1(x)) then becames

v hen2l P 3 [18(x)-12  (2(x)-12
H(E;1(x)) =-—j; wog (£51) %Pqe_ze \’7,2-112 tan ?ﬁ?-nz i perper

"__zE(X)_zEZ k)b a
T (w,k)} dn
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APPENDIX C

NUMERICAL SOLUTION OF THE INTEGRAL. EQUATIONS

FOR THE FUNCTIONS S(x) AND Q(x)

The kernels of the integral equations for the functions S(x)
and Q(x), which arise in the solution for the pressures in region II
for c¢ < ¢y, are equivalent to those gilven by Mirels for the flat-plate

wing at angle of attack and for roll. The integral equations for the
cambered wings differ from those for the flat plate only in the left-
hand members. Since these equations can be inverted analytically in the
neighborhood of x = ¢, the inversion in general can only be accomplished
by numerical methods. The numerical method of solution presented in this
appendix is based upon the method developed in reference 5.

Solution for S(x)

Let the range of integratlon be divided into n intervals of
length A and let the end points of the intervals be dencted.

by x3 =c+ 1A and the midpoints of the intervals by ii =c + (i - %)A

where 1 =0, 1, . . .n and x =x,. The integral equation for S(x)
glven by equation (2.1%) cen then be expressed as

n
2
M(x) = Z X3 S(e) 2" %AO(Ie{,k) . <1 1(x) g4
i1 a1 )/[ZE(X) - 12][12(x) - +2]

With the notation

woe) =520 5y Ly T - ()

o~
il

z.2
- - - 2 ty
g - t(xi) ES=1- 72

[
1

and with the use of the mean-value theorem, the integral equation is
approximated as
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n : L )
M(xn)= z S(’_Ci) IXi I(xn;é)dg + T{izzn Vig2 = 1332 = 1,2 - 14
1=1

5 - 2
X1 \[ 1,5 - By

Solving for S(_xn) glves

1
M (x) -ni 5(%s) fxi ‘I’(xn;g)dg+l-{121n R L

X ﬁ2_£2
8(%y) = 1=l -1 n " =
( 1.2.1 -2
n n-1

[ " Sle)a B,
*n-1 W‘na - En2

-
2

(c1)

The values of S(}'El), S(i'c ), . . . are found by successively
setting n =1, 2, . . . . The function \Ir(xn;g) is regular everywhere

and vanishes for £ =c and § = Xx,, and the integrals can be evaluated
by Simpson's rule or other suitable methods.

Solution for Q(x)

The integral equation (3.6) can be solved by the seme method as
that given for the evaluation of S(x). Dividing the range of integra-
tion ¢ to x into n intervals gives equation (3.6) as

Hx) = i fxi ae)punfale) = & o
X 7.2(x) -1°
i=1 1-1

and with the use of the mean-value theoren, Q(J"én) is determined as

n-l
N(xyp) -z a (%) \/znz - Eiz(\/;rlz AL 7,12)
Q(xn) = 1=1 (c2)
\ﬁnz - :Ena \/7’112 - 7'n-l2
The values Q(J'él) , Q,(:"ce), . . . are obtained by successively setting

n=1, 2, « » « &
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Figure l.- The function S(%‘-) for arrow wing with quadratic twist.
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Flgure 3.~ Rolling-moment distribution duve to aileron deflection.
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